Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(propane-1,2-diammonium) benzene-1,2,4,5-tetracarboxylate dihydrate

Hoda Pasdar,^a Maryam Majdolashrafi,^a* Hossein Aghabozorg^a and Hamid Reza Khavasi^b

^aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and ^bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran

Correspondence e-mail: majdolashrafi.m@gmail.com

Received 24 September 2010; accepted 28 October 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.001 Å; R factor = 0.041; wR factor = 0.112; data-to-parameter ratio = 20.8.

In the crystal of the title hydrated molecular salt, $2C_3H_{12}N_2^{2+}$. $C_{10}H_2O_8^{4-}\cdot 2H_2O$, the packing is stabilized by extensive N-H...O and O-H...O hydrogen-bonding interactions involving all three species, forming a supramolecular threedimensional structure. The tetraanion is generated by inversion.

Related literature

For proton transfer systems, see: Aghabozorg et al. (2008); Arora & Pedireddi (2003). For related structures, see: Wang et al. (2005); Ma et al. (2005); Mrvos-Sermek et al. (1996); Rafizadeh et al. (2006).

Experimental

Crystal data

 $2C_{3}H_{12}N_{2}^{2+} \cdot C_{10}H_{2}O_{8}^{4-} \cdot 2H_{2}O_{8}$ $M_r = 438.44$ Monoclinic, $P2_1/n$ a = 10.427 (2) Å b = 7.6955 (15) Å c = 12.854 (3) Å $\beta = 101.61 \ (3)^{\circ}$

V = 1010.3 (3) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^-$ T = 298 K $0.49 \times 0.40 \times 0.08 \; \mathrm{mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{\min} = 0.940, T_{\max} = 0.990$

8157 measured reflections 3038 independent reflections 2727 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture o
$wR(F^2) = 0.112$	independent and constrained
S = 1.07	refinement
3038 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
146 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$OW1-H1W\cdots O1^{i}$	0.85 (2)	1.91 (2)	2.7596 (17)	172 (2)
$OW1 - H2W \cdots O1^{iv}$	0.81(2)	2.20(2)	2.9845 (19)	167 (2)
$N1-H1A\cdots O2^{ii}$	0.89	1.98	2.8289 (15)	159
$N1 - H1B \cdot \cdot \cdot O2^{i}$	0.89	1.91	2.7910 (13)	168
$N1 - H1C \cdot \cdot \cdot O3^{iii}$	0.89	1.94	2.8130 (14)	168
$N2-H2A\cdots O4^{iii}$	0.89	1.95	2.8146 (14)	165
$N2-H2B\cdots OW1^{v}$	0.89	1.87	2.7574 (17)	172
$N2-H2C\cdots O4^{ii}$	0.89	1.91	2.7918 (14)	171

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, y - 1, z; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (v) x - 1, y, z.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are grateful to Islamic Azad University, North Tehran Branch for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2064).

References

- Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045-o1046.
- Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177-9185.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ma, L., Zhao, B. & Wang, L. (2005). Anal. Sci. 21, x85-x86.
- Mrvos-Sermek, D., Popovic, Z. & Matkovic-Calogovic, D. (1996). Acta Cryst. C52, 2538-2541.
- Rafizadeh, M., Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, 05034-05035
- Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, C., Yin, M., Li, M., Ma, X. & Sun, J. (2005). J. Wuhan Univ. Technol. 20, 38-42.

Acta Cryst. (2010). E66, o3043 [doi:10.1107/81600536810044065]

Bis(propane-1,2-diammonium) benzene-1,2,4,5-tetracarboxylate dihydrate

H. Pasdar, M. Majdolashrafi, H. Aghabozorg and H. R. Khavasi

Comment

Several proton transfer systems using benzene- 1,2,4,5-tetracarboxylic acid (H₄BTC), with nitrogen donor molecules, such as 1,10-phenanthroline, 1,7-phenanthroline, phenazine, 4-(*N*,*N*-dimethylamino)pyridine, 1,2-bis(4-pyridyl) ethene and 1,2-bis(4-pyridyl)ethane, have been synthesized and characterized by X-ray diffraction methods (Aghabozorg *et al.* 2008, Arora & Pedireddi, 2003). R%elated crystal structures of (H₂BTC)(Hphen)2- (H₄BTC) (where phen is 1,10-phenanthroline; Wang *et al.*, 2005), (H₃BTC)(Hbipy).3H2O (where bipy is 2,20-bipyridine; Ma *et al.*, 2005), (H₂BTC)(Hbipy)₂(H₄BTC) (Mrvos-Sermek *et al.*, 1996) and (BTC)(H₂en)₂.2H₂O (Rafizadeh *et al.* 2006) have been reported previously.

In the title compound, $(C_3H_{12}N_2)_2^{2+}$ $(C_{10}H_2O_8)^{4-}$. 2H₂O, the asymmetric unit contains two diprotonated propane-1,2diamine cations, one tetraanionic deprotonated anion form of benzene-1,2,4,5-tetracarboxylic acid and two water molecules (Fig. 1). The dication forms from the transfer of a single proton from each of the carboxyl groups to a propane-1,2-diamine molecule. The negative charges of one of the tetraanionic 1,2,4,5-benzenetetracarboxylate groups, is thereby neutralized by a doubly protonated propane-1,2-diammonium fragment. Crystal packing is stabilized by extensive N—H···O and O—H···O hydrogen bonding interactions involving all three species forming a supramolecular 3-D structure (Fig. 2).

Experimental

Propane-1,2-diamine (12.6 mmol) was added to a solution of benzene-1,2,4,5-tetracarboxylic acid (1.65 g, 6.3 mmol) in ethanol (30 ml) at room temperature. The milky precipitated product was recrystallized from water. After one week, colorless plate crystals of (I) were isolated (yield 87.1%, decomposition < 420 K)

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93, 0.98Å (CH), 0.97Å (CH₂) 0.96Å (CH₃) or 0.89Å (NH). Isotropic displacement parameters for these atoms were set to 1.5 times (NH), 1.2 (CH, CH₂, CH₃) times U_{eq} of the parent atom. Water H atoms atoms were located in a difference Fourier map and refined isotropically without restraint.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Crystal packing if the title compound viewed down the *a* axis. Dashed lines indicate N—H···O and O—H···O hydrogen bonding interactions involving cation, anion and water species forming a supermolecular 3-D structure.

Bis(propane-1,2-diammonium) benzene-1,2,4,5-tetracarboxylate dihydrate

F(000) = 468

 $\theta = 2.3 - 30.5^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$ T = 298 K

Plate, colorless

 $0.49 \times 0.40 \times 0.08 \text{ mm}$

 $D_{\rm x} = 1.441 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8157 reflections

Crystal data

 $2C_{3}H_{12}N_{2}^{2+}C_{10}H_{2}O_{8}^{4-}H_{2}O$ $M_{r} = 438.44$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 10.427 (2) Å b = 7.6955 (15) Å c = 12.854 (3) Å $\beta = 101.61$ (3)° V = 1010.3 (3) Å³ Z = 2

Data collection

Bruker SMART CD area-detector diffractometer	3038 independent reflections
Radiation source: fine-focus sealed tube	2727 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ϕ and ω scans	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)	$h = -14 \rightarrow 14$
$T_{\min} = 0.940, \ T_{\max} = 0.990$	$k = -10 \rightarrow 10$
8157 measured reflections	$l = -15 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.112$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0571P)^2 + 0.3092P]$ where $P = (F_o^2 + 2F_c^2)/3$
3038 reflections	$(\Delta/\sigma)_{\text{max}} = 0.004$
146 parameters	$\Delta \rho_{max} = 0.39 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1.				• •	. 1.	1 .	,	182	ź١
Fractional	atomic	coordinates	and 1	sotron	IC OF P	auwalent	isotron	10 dis	nlacement	narameters	IA^{-}	- 1
i ractionai	aiomic	coorainaico	unu n	5011 OP		juivaieni	1501100	ic and	pracement	parameters	(11	/

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.25868 (9)	0.83996 (13)	1.05876 (8)	0.01914 (19)
C2	0.12279 (9)	0.91697 (12)	1.02583 (7)	0.01626 (18)
C3	0.06315 (9)	0.94408 (12)	0.91926 (7)	0.01595 (17)
C4	0.12422 (9)	0.88991 (13)	0.82686 (7)	0.01717 (18)
C5	-0.05822 (9)	1.02713 (13)	0.89486 (7)	0.01784 (18)
Н5	-0.0971	1.0457	0.8240	0.021*
C6	0.39782 (14)	0.3316 (2)	1.09027 (10)	0.0389 (3)
H6A	0.3587	0.2308	1.1150	0.047*
H6B	0.3728	0.4332	1.1246	0.047*
H6C	0.4914	0.3200	1.1067	0.047*
C7	0.35129 (11)	0.34862 (15)	0.97084 (9)	0.0245 (2)
H7	0.3899	0.4541	0.9475	0.029*
C8	0.20338 (10)	0.36693 (14)	0.94363 (9)	0.0241 (2)
H8A	0.1645	0.2735	0.9774	0.029*
H8B	0.1789	0.4758	0.9723	0.029*
N1	0.39794 (8)	0.19628 (13)	0.91649 (7)	0.02395 (19)
H1A	0.3594	0.1001	0.9333	0.036*
H1B	0.4843	0.1861	0.9373	0.036*
H1C	0.3779	0.2120	0.8465	0.036*
N2	0.14955 (9)	0.36274 (12)	0.82766 (7)	0.02209 (18)
H2A	0.1997	0.4268	0.7942	0.033*
H2B	0.0685	0.4053	0.8147	0.033*
H2C	0.1481	0.2536	0.8046	0.033*
01	0.28549 (8)	0.75595 (13)	1.14363 (7)	0.0344 (2)
O2	0.33872 (7)	0.87232 (12)	0.99958 (7)	0.0302 (2)

03	0.12767 (9)	0.73323 (1	0) 0.804	146 (7) (0.02951 (19)	
O4	0.16276 (8)	1.01227 (1	0) 0.774	170 (6)	0.02490 (18)	
OW1	0.89422 (11)	0.47495 (1	8) 0.804	452 (13)	0.0566 (4)	
H1W	0.833 (2)	0.408 (3)	0.815	54 (16)	0.052 (5)*	
H2W	0.869 (2)	0.559 (3)	0.769	0(2) ().065 (7)*	
Atomic displac	ement parameters	$(Å^2)$				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C1	0.0145 (4)	0.0196 (4)	0.0234 (4)	0.0020 (3)	0.0040 (3)	0.0006 (3)
C2	0.0141 (4)	0.0176 (4)	0.0179 (4)	0.0015 (3)	0.0053 (3)	0.0012 (3)
C3	0.0154 (4)	0.0171 (4)	0.0167 (4)	0.0003 (3)	0.0067 (3)	-0.0010 (3)
C4	0.0160 (4)	0.0199 (4)	0.0167 (4)	0.0015 (3)	0.0059 (3)	-0.0016 (3)
C5	0.0161 (4)	0.0230 (4)	0.0148 (4)	0.0020 (3)	0.0040 (3)	0.0008 (3)
C6	0.0414 (7)	0.0510 (8)	0.0217 (5)	-0.0021 (6)	0.0002 (5)	-0.0028 (5)
C7	0.0240 (5)	0.0262 (5)	0.0229 (5)	-0.0040 (4)	0.0038 (4)	-0.0001 (4)
C8	0.0241 (5)	0.0253 (5)	0.0243 (5)	0.0013 (4)	0.0086 (4)	-0.0007 (4)
N1	0.0187 (4)	0.0302 (5)	0.0234 (4)	0.0020 (3)	0.0052 (3)	0.0036 (3)
N2	0.0202 (4)	0.0208 (4)	0.0257 (4)	0.0013 (3)	0.0058 (3)	0.0023 (3)
01	0.0243 (4)	0.0431 (5)	0.0355 (5)	0.0087 (3)	0.0055 (3)	0.0183 (4)
02	0.0167 (3)	0.0416 (5)	0.0345 (4)	0.0056 (3)	0.0107 (3)	0.0097 (4)
O3	0.0440 (5)	0.0192 (4)	0.0302 (4)	-0.0002 (3)	0.0189 (3)	-0.0043 (3)
O4	0.0322 (4)	0.0211 (4)	0.0262 (4)	-0.0002 (3)	0.0174 (3)	0.0001 (3)
OW1	0.0266 (5)	0.0496 (7)	0.0948 (10)	0.0052 (5)	0.0151 (5)	0.0303 (7)
Geometric par	ameters (Å, °)					
01—C1		1.2504 (14)	C1—	-C2	1.5	5155 (14)
O2—C1		1.2620 (13)	C2—	-C5 ⁱ	1.3	978 (13)
O3—C4		1.2418 (13)	C2—	-C3	1.4	014 (13)
O4—C4		1.2673 (13)	С3—	-C5	1.3	959 (14)
OW1—H1W		0.85 (2)	С3—	-C4	1.5	5147 (13)
OW1—H2W		0.81 (2)	С5—	-H5	0.9	300
N1—C7		1.4953 (15)	С6—	-C7	1.5	5197 (17)
N2—C8		1.4837 (15)	С7—	-C8	1.5	178 (16)
N1—H1B		0.8900	С6—	H6B	0.9	600
N1—H1C		0.8900	С6—	-H6C	0.9	600
N1—H1A		0.8900	С6—	-H6A	0.9	600
N2—H2C		0.8900	С7—	-H7	0.9	800
N2—H2B		0.8900	C8—	-H8B	0.9	700
N2—H2A		0.8900	C8—	-H8A	0.9	700
O1…OW1 ⁱⁱ		2.7596 (17)	C3…]	H8A ^{vi}	2.7	900
O1…OW1 ⁱⁱⁱ		2.9845 (19)	C4…]	H2C ^{vi}	2.8	300
OW1…O1 ^{iv}		2.9845 (19)	C4…]	H1A ^{vi}	3.0	300
OW1···O3 ^v		3.1427 (17)	C4…]	H2A ^{ix}	2.6	500
OW1…N2 ^v		2.7574 (17)	C4…]	H1C ^{ix}	2.6	100
OW1…O1 ⁱⁱ		2.7596 (17)	C5…]	H8A ^{vi}	3.0	200

O2…C4	2.8198 (14)	C6…H7 ⁱⁱ	2.8800
02…03	3.1713 (14)	C7····H7 ⁱⁱ	3.0900
O2…N1 ^{vi}	2.8289 (15)	$H1W\cdots H2B^{v}$	2.4600
O2…N1 ⁱⁱ	2.7910 (13)	H1W…O1 ⁱⁱ	1.91 (2)
O3…C8	3.3468 (16)	H1W…C1 ⁱⁱ	2.79 (2)
03…02	3.1713 (14)	H1A…C4 ^{xii}	3.0300
O3…C1	3.3806 (16)	H1A…O2 ^{xii}	1.9800
O3…N2	2.8710 (14)	Н1А…Н6А	2.5400
O3…OW1 ^{vii}	3.1427 (17)	H1A…H8A	2.5900
O3…O4 ^{viii}	3.0979 (14)	H1A…C1 ^{xii}	2.9000
O3…N1 ^{ix}	2.8130 (14)	H1A…O4 ^{xii}	2.6700
O4…N2 ^{vi}	2.7918 (14)	H1B…O1 ⁱⁱ	2.8400
$O4 \cdot \cdot \cdot N2^{ix}$	2.8146 (14)	H1B…C1 ⁱⁱ	2.6800
O4…N1 ^{vi}	3.0889 (14)	H1B····O2 ⁱⁱ	1.9100
O4···C7 ^{ix}	3.3738 (16)	Н1В…Н6С	2.4000
O4···O3 ^{ix}	3.0979 (14)	H1C…O4 ^{xii}	2.7200
O1…H1B ⁱⁱ	2.8400	H1C…C4 ^{viii}	2.6100
O1…H6B	2.6700	H1C…O3 ^{viii}	1.9400
O1…H5 ⁱ	2.5900	H1C…O4 ^{viii}	2.7700
O1…H2W ⁱⁱⁱ	2.20 (2)	Н1С…Н2А	2.4800
O1…H1W ⁱⁱ	1.91 (2)	H1C…H2C	2.3700
OW1···H6A ^x	2.8700	H1C…N2	2.6200
OW1···H2B ^v	1.8700	H2W…C1 ^{iv}	2.83 (2)
O2…H1A ^{vi}	1.9800	$H2W$ ··· $H2B^{v}$	2.3600
O2…H6C ⁱⁱ	2.8600	H2W…O1 ^{iv}	2.20 (2)
O2…H1B ⁱⁱ	1.9100	H2A…O4 ^{viii}	1.9500
O3…H8B	2.9000	H2A…N1	2.9300
O3···H2A ^{ix}	2.8300	Н2А…ОЗ	2.4900
O3···H1C ^{ix}	1.9400	H2A…C4 ^{viii}	2.6500
O3…H2A	2.4900	H2A…O3 ^{viii}	2.8300
O3…H2B	2.6100	H2A…H1C	2.4800
O4···H2A ^{ix}	1.9500	H2A…H7	2.5100
O4…H1C ^{ix}	2.7700	H2B…O3	2.6100
O4…H5	2.9200	H2B…H2W ^{vii}	2.3600
O4…H7 ^{ix}	2.8300	H2B…OW1 ^{vii}	1.8700
O4···H6C ^{xi}	2.8200	H2B…H1W ^{vii}	2.4600
O4···H2C ^{vi}	1.9100	H2C···C3 ^{xii}	3.0300
O4…H1A ^{vi}	2.6700	H2C…N1	2.7500
O4…H1C ^{vi}	2.7200	Н2С…Н1С	2.3700
N1…N2	2.9090 (15)	H2C…O4 ^{xii}	1.9100
N1…O2 ^{xii}	2.8289 (15)	H2C…C4 ^{xii}	2.8300

N1···O4 ^{xii}	3.0889 (14)	H5…O1 ⁱ	2.5900
N1····C4 ^{viii}	3.4304 (15)	H5···H6B ^{xi}	2.5200
N1···O2 ⁱⁱ	2.7910 (13)	Н5…О4	2.9200
N1…O3 ^{viii}	2.8130 (14)	H6A…OW1 ^{xiii}	2.8700
N2…O4 ^{viii}	2.8146 (14)	H6A…H1A	2.5400
N2…O3	2.8710 (14)	Н6А…Н8А	2.4300
N2…O4 ^{xii}	2.7918 (14)	H6B····H5 ^{xiv}	2.5200
N2…N1	2.9090 (15)	H6B…H8B	2.5400
N2…C4 ^{viii}	3.3822 (15)	H6B…O1	2.6700
N2…OW1 ^{vii}	2.7574 (17)	H6C···O2 ⁱⁱ	2.8600
N1…H2C	2.7500	H6C…H7 ⁱⁱ	2.3200
N1…H2A	2.9300	Н6С…Н1В	2.4000
N2…H1C	2.6200	H6C···O4 ^{xiv}	2.8200
C1O3	3.3806 (16)	H7···H6C ⁱⁱ	2.3200
C3····C8 ^{vi}	3.5554 (16)	H7…H7 ⁱⁱ	2.5200
C4…N1 ^{ix}	3.4304 (15)	H7···C7 ⁱⁱ	3.0900
C4…O2	2.8198 (14)	Н7…Н2А	2.5100
C4…N2 ^{ix}	3.3822 (15)	H7…O4 ^{viii}	2.8300
C7…O4 ^{viii}	3.3738 (16)	H7···C6 ⁱⁱ	2.8800
C8…O3	3.3468 (16)	Н8А…Н6А	2.4300
C8····C3 ^{xii}	3.5554 (16)	H8A···C3 ^{xii}	2.7900
C1…H1B ⁱⁱ	2.6800	H8A…C5 ^{xii}	3.0200
C1…H2W ⁱⁱⁱ	2.83 (2)	H8A…C2 ^{xii}	2.8700
C1…H1A ^{vi}	2.9000	H8A…H1A	2.5900
C1…H8B	3.0700	H8B…C1	3.0700
C1…H1W ⁱⁱ	2.79 (2)	H8B…H6B	2.5400
C2…H8A ^{vi}	2.8700	H8B…O3	2.9000
C3···H2C ^{vi}	3.0300		
H1W—OW1—H2W	114 (2)	O3—C4—O4	124.87 (10)
H1A—N1—H1C	109.00	O4—C4—C3	116.01 (9)
H1B—N1—H1C	109.00	C2 ⁱ —C5—C3	121.67 (9)
C7—N1—H1C	109.00	С3—С5—Н5	119.00
C7—N1—H1A	109.00	C2 ⁱ —C5—H5	119.00
C7—N1—H1B	109.00	C6—C7—C8	110.11 (10)
H1A—N1—H1B	109.00	N1—C7—C6	109.67 (10)
C8—N2—H2A	109.00	N1—C7—C8	112.09 (9)
H2A—N2—H2C	110.00	N2—C8—C7	113.01 (9)
C8—N2—H2C	109.00	С7—С6—Н6В	109.00
H2A—N2—H2B	109.00	С7—С6—Н6С	110.00
C8—N2—H2B	109.00	H6A—C6—H6B	109.00
H2B—N2—H2C	109.00	H6A—C6—H6C	109.00
O2—C1—C2	116.68 (9)	H6B—C6—H6C	109.00
O1—C1—O2	124.68 (10)	С7—С6—Н6А	109.00
01—C1—C2	118.57 (9)	N1—C7—H7	108.00

C1—C2—C3	122.50 (9)	С8—С7—Н7	108.00
C3—C2—C5 ⁱ	118.88 (9)	С6—С7—Н7	108.00
C1—C2—C5 ⁱ	118.50 (9)	N2—C8—H8A	109.00
C2—C3—C4	123.48 (9)	N2—C8—H8B	109.00
C2—C3—C5	119.45 (9)	С7—С8—Н8В	109.00
C4—C3—C5	117.07 (8)	H8A—C8—H8B	108.00
O3—C4—C3	119.04 (9)	С7—С8—Н8А	109.00
O1—C1—C2—C5 ⁱ	32.71 (14)	C5 ⁱ —C2—C3—C5	0.53 (14)
O2—C1—C2—C3	31.49 (14)	C5—C3—C4—O3	-107.87 (11)
O1—C1—C2—C3	-151.38 (10)	C4—C3—C5—C2 ⁱ	-179.74 (9)
02—C1—C2—C5 ⁱ	-144.42 (10)	C5—C3—C4—O4	68.84 (12)
C1—C2—C3—C4	3.77 (15)	C2—C3—C5—C2 ⁱ	-0.54 (15)
C1—C2—C3—C5	-175.37 (9)	C2—C3—C4—O4	-110.32 (11)
C3—C2—C5 ⁱ —C3 ⁱ	-0.54 (15)	C2—C3—C4—O3	72.98 (13)
C1—C2—C5 ⁱ —C3 ⁱ	175.52 (9)	N1—C7—C8—N2	-50.66 (12)
C5 ⁱ —C2—C3—C4	179.67 (9)	C6—C7—C8—N2	-173.04 (10)

Symmetry codes: (i) -*x*, -*y*+2, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) *x*-1/2, -*y*+3/2, *z*+1/2; (iv) *x*+1/2, -*y*+3/2, *z*-1/2; (v) *x*+1, *y*, *z*; (vi) *x*, *y*+1, *z*; (vii) *x*-1, *y*, *z*; (viii) -*x*+1/2, *y*-1/2, -*z*+3/2; (ix) -*x*+1/2, *y*+1/2, -*z*+3/2; (x) *x*+1/2, -*y*+1/2, *z*-1/2; (xi) *x*-1/2, -*y*+3/2, *z*-1/2; (xii) *x*, *y*-1, *z*; (xiii) *x*-1/2, -*y*+1/2, *z*+1/2; (xiv) *x*+1/2, -*y*+3/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
OW1—H1W···O1 ⁱⁱ	0.85 (2)	1.91 (2)	2.7596 (17)	172 (2)
N1—H1A····O2 ^{xii}	0.89	1.98	2.8289 (15)	159
N1—H1B···O2 ⁱⁱ	0.89	1.91	2.7910 (13)	168
N1—H1C···O3 ^{viii}	0.89	1.94	2.8130 (14)	168
OW1—H2W···O1 ^{iv}	0.81 (2)	2.20 (2)	2.9845 (19)	167 (2)
N2—H2A····O4 ^{viii}	0.89	1.95	2.8146 (14)	165
N2—H2B…OW1 ^{vii}	0.89	1.87	2.7574 (17)	172
N2—H2C···O4 ^{xii}	0.89	1.91	2.7918 (14)	171

Symmetry codes: (ii) -x+1, -y+1, -z+2; (xii) x, y-1, z; (viii) -x+1/2, y-1/2, -z+3/2; (iv) x+1/2, -y+3/2, z-1/2; (vii) x-1, y, z.

Fig. 1

Fig. 2